BACKGROUND: Most artificial intelligence tools used to estimate nutritional content rely on image input. However, whether large language models (LLMs) can accurately predict nutritional values based solely on text descriptions of foods consumed remains unknown. If effective, this approach could enable simpler dietary monitoring without the need for photographs. METHODS: We used 24-hour dietary recalls from adolescents aged 12-19 years in the National Health and Nutrition Examination Survey (NHANES). An open-source quantized LLM was prompted using a 10-shot, chain-of-thought approach to estimate energy and five macronutrients based solely on text strings listing foods and their quantities. We then applied parameter-efficient fine-tuning (PEFT) to evaluate whether predictive accuracy improved. NHANES-calculated values served as the ground truth for energy, proteins, carbohydrates, total sugar, dietary fiber and total fat. RESULTS: In a pooled dataset of 11,281 adolescents (49.9% male, mean age 15.4 years), the vanilla LLM yielded poor predictions. The mean absolute error (MAE) was 652.08 for energy and the Lin's CCC <0.46 across endpoints. In contrast, the fine-tuned model performed substantially better, with energy MAEs ranging from 171.34 to 190.90 across subsets, and Lin's CCC exceeding 0.89 for all outcomes. CONCLUSIONS: When prompted using a chain-of-thought approach and fine-tuned with PEFT, open-source LLMs exposed solely to text input can accurately predict energy and macronutrient values from 24-hour dietary recalls. This approach holds promise for low-burden, text-based dietary monitoring tools. View paper on