We present LIWhiz, a non-intrusive lyric intelligibility prediction system submitted to the ICASSP 2026 Cadenza Challenge. LIWhiz leverages Whisper for robust feature extraction and a trainable back-end for score prediction. Tested on the Cadenza Lyric Intelligibility Prediction (CLIP) evaluation set, LIWhiz achieves a 22.4% relative root mean squared error reduction over the STOI-based baseline, yielding a substantial improvement in normalized cross-correlation.