views.In this paper, we present a comprehensive empirical analysis of opinion summarisation, examining three state-of-the-art pruning methods and various calibration sets across three open-source LLMs using four fairness metrics. Our systematic analysis reveals that pruning methods have a greater impact on fairness than calibration sets. Building on these insights, we propose High Gradient Low Activation (HGLA) pruning, which identifies and removes parameters that are redundant for input processing but influential in output generation. Our experiments demonstrate that HGLA can better maintain or even improve fairness compared to existing methods, showing promise across models and tasks where traditional methods have limitations. Our human evaluation shows HGLA-generated outputs are fairer than existing state-of-the-art pruning methods. Code is available at: https://github.com/amberhuang01/HGLA.
Model compression through post-training pruning offers a way to reduce model size and computational requirements without significantly impacting model performance. However, the effect of pruning on the fairness of LLM-generated summaries remains unexplored, particularly for opinion summarisation where biased outputs could influence public