We consider a source that shares updates with a network of $n$ gossiping nodes. The network's topology switches between two arbitrary topologies, with switching governed by a two-state continuous time Markov chain (CTMC) process. Information freshness is well-understood for static networks. This work evaluates the impact of time-varying connections on information freshness. In order to quantify the freshness of information, we use the version age of information metric. If the two networks have static long-term average version ages of $f_1(n)$ and $f_2(n)$ with $f_1(n) \ll f_2(n)$, then the version age of the varying-topologies network is related to $f_1(n)$, $f_2(n)$, and the transition rates in the CTMC. If the transition rates in the CTMC are faster than $f_1(n)$, the average version age of the varying-topologies network is $f_1(n)$. Further, we observe that the behavior of a vanishingly small fraction of nodes can severely impact the long-term average version age of a network in a negative way. This motivates the definition of a typical set of nodes in the network. We evaluate the impact of fast and slow CTMC transition rates on the typical set of nodes.