Agro-tourism serves as a strategic economic model designed to facilitate rural development by diversifying income streams for local communities like farmers while promoting the conservation of indigenous cultural heritage and traditional agricultural practices. As a very booming subdomain of tourism, there is a need to study the strategies for the growth of Agro-tourism in detail. The current study has identified the important indicators for the growth and enhancement of agro-tourism. The study is conducted in two phases: identification of the important indicators through a comprehensive literature review and in the second phase state-of-the-art techniques were used to identify the important indicators for the growth of agro-tourism. The indicators are also called features synonymously, the machine learning models for feature selection were applied and it was observed that the Least Absolute Shrinkage and Selection Operator (LASSO) method combined with, the machine Learning Classifiers such as Logistic Regression (LR), Decision Trees (DT), Random Forest (RF) Tree, and Extreme Gradient Boosting (XGBOOST) models were used to suggest the growth of the agro-tourism. The results show that with the LASSO method, LR model gives the highest classification accuracy of 98% in 70-30% train-test data followed by RF with 95% accuracy. Similarly, in the 80-20% train-test data LR maintains the highest accuracy at 99%, while DT and XGBoost follow with 97% accuracy.