This study addresses the challenge of accurately forecasting geometric deviations in manufactured components using advanced 3D surface analysis. Despite progress in modern manufacturing, maintaining dimensional precision remains difficult, particularly for complex geometries. We present a methodology that employs a high-resolution 3D scanner to acquire multi-angle surface data from 237 components produced across different batches. The data were processed through precise alignment, noise reduction, and merging techniques to generate accurate 3D representations. A hybrid machine learning framework was developed, combining convolutional neural networks for feature extraction with gradient-boosted decision trees for predictive modeling. The proposed system achieved a prediction accuracy of 0.012 mm at a 95% confidence level, representing a 73% improvement over conventional statistical process control methods. In addition to improved accuracy, the model revealed hidden correlations between manufacturing parameters and geometric deviations. This approach offers significant potential for automated quality control, predictive maintenance, and design optimization in precision manufacturing, and the resulting dataset provides a strong foundation for future predictive modeling research.