We study the sample complexity of Bayesian recovery for solving inverse problems with general prior, forward operator and noise distributions. We consider posterior sampling according to an approximate prior $\mathcal{P}$, and establish sufficient conditions for stable and accurate recovery with high probability. Our main result is a non-asymptotic bound that shows that the sample complexity depends on (i) the intrinsic complexity of $\mathcal{P}$, quantified by its so-called approximate covering number, and (ii) concentration bounds for the forward operator and noise distributions. As a key application, we specialize to generative priors, where $\mathcal{P}$ is the pushforward of a latent distribution via a Deep Neural Network (DNN). We show that the sample complexity scales log-linearly with the latent dimension $k$, thus establishing the efficacy of DNN-based priors. Generalizing existing results on deterministic (i.e., non-Bayesian) recovery for the important problem of random sampling with an orthogonal matrix $U$, we show how the sample complexity is determined by the coherence of $U$ with respect to the support of $\mathcal{P}$. Hence, we establish that coherence plays a fundamental role in Bayesian recovery as well. Overall, our framework unifies and extends prior work, providing rigorous guarantees for the sample complexity of solving Bayesian inverse problems with arbitrary distributions.