Causal forests are increasingly used to personalize decisions based on estimated treatment effects. A distinctive modeling choice in this method is honest estimation: using separate data for splitting and for estimating effects within leaves. This practice is the default in most implementations and is widely seen as desirable for causal inference. But we show that honesty can hurt the accuracy of individual-level effect estimates. The reason is a classic bias-variance trade-off: honesty reduces variance by preventing overfitting, but increases bias by limiting the model's ability to discover and exploit meaningful heterogeneity in treatment effects. This trade-off depends on the signal-to-noise ratio (SNR): honesty helps when effect heterogeneity is hard to detect (low SNR), but hurts when the signal is strong (high SNR). In essence, honesty acts as a form of regularization, and like any regularization choice, it should be guided by out-of-sample performance, not adopted by default.