In this paper, we presents a novel hierarchical federated learning architecture specifically designed for smart agricultural production systems and crop yield prediction. Our approach introduces a seasonal subscription mechanism where farms join crop-specific clusters at the beginning of each agricultural season. The proposed three-layer architecture consists of individual smart farms at the client level, crop-specific aggregators at the middle layer, and a global model aggregator at the top level. Within each crop cluster, clients collaboratively train specialized models tailored to specific crop types, which are then aggregated to produce a higher-level global model that integrates knowledge across multiple crops. This hierarchical design enables both local specialization for individual crop types and global generalization across diverse agricultural contexts while preserving data privacy and reducing communication overhead. Experiments demonstrate the effectiveness of the proposed system, showing that local and crop-layer models closely follow actual yield patterns with consistent alignment, significantly outperforming standard machine learning models. The results validate the advantages of hierarchical federated learning in the agricultural context, particularly for scenarios involving heterogeneous farming environments and privacy-sensitive agricultural data.