Operator learning seeks to approximate mappings from input functions to output solutions, particularly in the context of partial differential equations (PDEs). While recent advances such as DeepONet and Fourier Neural Operator (FNO) have demonstrated strong performance, they often rely on regular grid discretizations, limiting their applicability to complex or irregular domains. In this work, we propose a Graph-based Operator Learning with Attention (GOLA) framework that addresses this limitation by constructing graphs from irregularly sampled spatial points and leveraging attention-enhanced Graph Neural Netwoks (GNNs) to model spatial dependencies with global information. To improve the expressive capacity, we introduce a Fourier-based encoder that projects input functions into a frequency space using learnable complex coefficients, allowing for flexible embeddings even with sparse or nonuniform samples. We evaluated our approach across a range of 2D PDEs, including Darcy Flow, Advection, Eikonal, and Nonlinear Diffusion, under varying sampling densities. Our method consistently outperforms baselines, particularly in data-scarce regimes, demonstrating strong generalization and efficiency on irregular domains.