This paper proposes a novel graph-based framework for robust and interpretable multiclass fault diagnosis in rotating machinery. The method integrates entropy-optimized signal segmentation, time-frequency feature extraction, and graph-theoretic modeling to transform vibration signals into structured representations suitable for classification. Graph metrics, such as average shortest path length, modularity, and spectral gap, are computed and combined with local features to capture global and segment-level fault characteristics. The proposed method achieves high diagnostic accuracy when evaluated on two benchmark datasets, the CWRU bearing dataset (under 0-3 HP loads) and the SU gearbox and bearing datasets (under different speed-load configurations). Classification scores reach up to 99.8% accuracy on Case Western Reserve University (CWRU) and 100% accuracy on the Southeast University datasets using a logistic regression classifier. Furthermore, the model exhibits strong noise resilience, maintaining over 95.4% accuracy at high noise levels (standard deviation = 0.5), and demonstrates excellent cross-domain transferability with up to 99.7% F1-score in load-transfer scenarios. Compared to traditional techniques, this approach requires no deep learning architecture, enabling lower complexity while ensuring interpretability. The results confirm the method's scalability, reliability, and potential for real-time deployment in industrial diagnostics.