Mixture-of-Experts (MoE) models achieve efficiency through sparse activation, but the role of geometric regularization in expert specialization remains unclear. We apply orthogonality loss to enforce expert diversity and find it fails on multiple fronts: it does not reduce weight-space overlap (MSO actually increases by up to 114%), activation-space overlap remains high (~0.6) regardless of regularization, and effects on performance are inconsistent -- marginal improvement on WikiText-103 (-0.9%), slight degradation on TinyStories (+0.9%), and highly variable results on PTB (std > 1.0). Our analysis across 7 regularization strengths reveals no significant correlation (r = -0.293, p = 0.523) between weight and activation orthogonality. These findings demonstrate that weight-space regularization neither achieves its geometric goal nor reliably improves performance, making it unsuitable for MoE diversity.