Given a signed bipartite graph (SBG) G with two disjoint node sets U and V, the goal of link sign prediction is to predict the signs of potential links connecting U and V based on known positive and negative edges in G. The majority of existing solutions towards link sign prediction mainly focus on unipartite signed graphs, which are sub-optimal due to the neglect of node heterogeneity and unique bipartite characteristics of SBGs. To this end, recent studies adapt graph neural networks to SBGs by introducing message-passing schemes for both inter-partition (UxV) and intra-partition (UxU or VxV) node pairs. However, the fundamental spectral convolutional operators were originally designed for positive links in unsigned graphs, and thus, are not optimal for inferring missing positive or negative links from known ones in SBGs. Motivated by this, this paper proposes GegenNet, a novel and effective spectral convolutional neural network model for link sign prediction in SBGs. In particular, GegenNet achieves enhanced model capacity and high predictive accuracy through three main technical contributions: (i) fast and theoretically grounded spectral decomposition techniques for node feature initialization; (ii) a new spectral graph filter based on the Gegenbauer polynomial basis; and (iii) multi-layer sign-aware spectral convolutional networks alternating Gegenbauer polynomial filters with positive and negative edges. Our extensive empirical studies reveal that GegenNet can achieve significantly superior performance (up to a gain of 4.28% in AUC and 11.69% in F1) in link sign prediction compared to 11 strong competitors over 6 benchmark SBG datasets.