Building on existing work with Hyperblocks, which classify data using minimum and maximum bounds for each attribute, we focus on enhancing interpretability, decreasing training time, and reducing model complexity without sacrificing accuracy. This system allows subject matter experts (SMEs) to directly inspect and understand the model's decision logic without requiring extensive machine learning expertise. To reduce Hyperblock complexity while retaining performance, we introduce a suite of algorithms for Hyperblock simplification. These include removing redundant attributes, removing redundant blocks through overlap analysis, and creating disjunctive units. These methods eliminate unnecessary parameters, dramatically reducing model size without harming classification power. We increase robustness by introducing an interpretable fallback mechanism using k-Nearest Neighbor (k-NN) classifiers for points not covered by any block, ensuring complete data coverage while preserving model transparency. Our results demonstrate that interpretable models can scale to high-dimensional, large-volume datasets while maintaining competitive accuracy. On benchmark datasets such as WBC (9-D), we achieve strong predictive performance with significantly reduced complexity. On MNIST (784-D), our method continues to improve through tuning and simplification, showing promise as a transparent alternative to black-box models in domains where trust, clarity, and control are crucial.