This study explores the intersection of electroencephalography (EEG) microstates and Large Language Models (LLMs) to enhance the assessment of cognitive load states. By utilizing EEG microstate features, the research aims to fine-tune LLMs for improved predictions of distinct cognitive states, specifically 'Rest' and 'Load'. The experimental design is delineated in four comprehensive stages: dataset collection and preprocessing, microstate segmentation and EEG backfitting, feature extraction paired with prompt engineering, and meticulous LLM model selection and refinement. Employing a supervised learning paradigm, the LLM is trained to identify cognitive load states based on EEG microstate features integrated into prompts, producing accurate discrimination of cognitive load. A curated dataset, linking EEG features to specified cognitive load conditions, underpins the experimental framework. The results indicate a significant improvement in model performance following the proposed fine-tuning, showcasing the potential of EEG-informed LLMs in cognitive neuroscience and cognitive AI applications. This approach not only contributes to the understanding of brain dynamics but also paves the way for advancements in machine learning techniques applicable to cognitive load and cognitive AI research.