This paper introduces a novel end-to-end framework that efficiently integrates data quality assessment with machine learning (ML) model operations in real-time production environments. While existing approaches treat data quality assessment and ML systems as isolated processes, our framework addresses the critical gap between theoretical methods and practical implementation by combining dynamic drift detection, adaptive data quality metrics, and MLOps into a cohesive, lightweight system. The key innovation lies in its operational efficiency, enabling real-time, quality-driven ML decision-making with minimal computational overhead. We validate the framework in a steel manufacturing company's Electroslag Remelting (ESR) vacuum pumping process, demonstrating a 12% improvement in model performance (R2 = 94%) and a fourfold reduction in prediction latency. By exploring the impact of data quality acceptability thresholds, we provide actionable insights into balancing data quality standards and predictive performance in industrial applications. This framework represents a significant advancement in MLOps, offering a robust solution for time-sensitive, data-driven decision-making in dynamic industrial environments.