Multilingual large language models (LLMs) have gained significant popularity for their ability to process and generate text across multiple languages. However, deploying these models in production can be inefficient when only a subset of the supported languages is of interest. There has been some research conducted on identifying whether machine translation models have language-specific or language-agnostic heads, however no research has been conducted for multilingual LLMs, to the best of our knowledge, that as we know are capable of performing diverse tasks beyond just translation. This paper explores whether multilingual LLMs have specialized language attention heads for each language, and investigates the possibility of removing language-specific heads for unwanted languages without degrading performance in the targeted languages. Our findings could inform more efficient deployment strategies for multilingual LLMs, enabling reduced model complexity while maintaining high accuracy for targeted languages.