In this paper, we propose a novel distance-based camera network topology inference method for efficient person re-identification. To this end, we first calibrate each camera and estimate relative scales between cameras. Using the calibration results of multiple cameras, we calculate the speed of each person and infer the distance between cameras to generate distance-based camera network topology. The proposed distance-based topology can be applied adaptively to each person according to its speed and handle diverse transition time of people between non-overlapping cameras. To validate the proposed method, we tested the proposed method using an open person re-identification dataset and compared to state-of-the-art methods. The experimental results show that the proposed method is effective for person re-identification in the large-scale camera network with various people transition time.