Linear recurrent neural networks have emerged as efficient alternatives to the original Transformer's softmax attention mechanism, thanks to their highly parallelizable training and constant memory and computation requirements at inference. Iterative refinements of these models have introduced an increasing number of architectural mechanisms, leading to increased complexity and computational costs. Nevertheless, systematic direct comparisons among these models remain limited. Existing benchmark tasks are either too simplistic to reveal substantial differences or excessively resource-intensive for experimentation. In this work, we propose a refined taxonomy of linear recurrent models and introduce SelectivBench, a set of lightweight and customizable synthetic benchmark tasks for systematically evaluating sequence models. SelectivBench specifically evaluates selectivity in sequence models at small to medium scale, such as the capacity to focus on relevant inputs while ignoring context-based distractors. It employs rule-based grammars to generate sequences with adjustable complexity, incorporating irregular gaps that intentionally violate transition rules. Evaluations of linear recurrent models on SelectivBench reveal performance patterns consistent with results from large-scale language tasks. Our analysis clarifies the roles of essential architectural features: gating and rapid forgetting mechanisms facilitate recall, in-state channel mixing is unnecessary for selectivity, but critical for generalization, and softmax attention remains dominant due to its memory capacity scaling with sequence length. Our benchmark enables targeted, efficient exploration of linear recurrent models and provides a controlled setting for studying behaviors observed in large-scale evaluations. Code is available at https://github.com/symseqbench/selectivbench