Stochastic forecasting is critical for efficient decision-making in uncertain systems, such as energy markets and finance, where estimating the full distribution of future scenarios is essential. We propose Diffusion Scenario Tree (DST), a general framework for constructing scenario trees for multivariate prediction tasks using diffusion-based probabilistic forecasting models. DST recursively samples future trajectories and organizes them into a tree via clustering, ensuring non-anticipativity (decisions depending only on observed history) at each stage. We evaluate the framework on the optimization task of energy arbitrage in New York State's day-ahead electricity market. Experimental results show that our approach consistently outperforms the same optimization algorithms that use scenario trees from more conventional models and Model-Free Reinforcement Learning baselines. Furthermore, using DST for stochastic optimization yields more efficient decision policies, achieving higher performance by better handling uncertainty than deterministic and stochastic MPC variants using the same diffusion-based forecaster.