Deep neural networks can memorize corrupted labels, making data quality critical for model performance, yet real-world datasets are frequently compromised by both label noise and input noise. This paper proposes a mutual information-based framework for data selection under hybrid noise scenarios that quantifies statistical dependencies between inputs and labels. We compute each sample's pointwise contribution to the overall mutual information and find that lower contributions indicate noisy or mislabeled instances. Empirical validation on MNIST with different synthetic noise settings demonstrates that the method effectively filters low-quality samples. Under label corruption, training on high-MI samples improves classification accuracy by up to 15\% compared to random sampling. Furthermore, the method exhibits robustness to benign input modifications, preserving semantically valid data while filtering truly corrupted samples.