The growing interest in automated movement analysis has presented new challenges in recognition of complex human activities including dance. This study focuses on dance style recognition using features extracted using Laban Movement Analysis. Previous studies for dance style recognition often focus on cross-frame movement analysis, which limits the ability to capture temporal context and dynamic transitions between movements. This gap highlights the need for a method that can add temporal context to LMA features. For this, we introduce a novel pipeline which combines 3D pose estimation, 3D human mesh reconstruction, and floor aware body modeling to effectively extract LMA features. To address the temporal limitation, we propose a sliding window approach that captures movement evolution across time in features. These features are then used to train various machine learning methods for classification, and their explainability explainable AI methods to evaluate the contribution of each feature to classification performance. Our proposed method achieves a highest classification accuracy of 99.18\% which shows that the addition of temporal context significantly improves dance style recognition performance.