In this work, we present the feedforward neural network based on the conservative approximation to the derivative from point values, for the weighted essentially non-oscillatory (WENO) schemes in solving hyperbolic conservation laws. The feedforward neural network, whose inputs are point values from the three-point stencil and outputs are two nonlinear weights, takes the place of the classical WENO weighting procedure. For the training phase, we employ the supervised learning and create a new labeled dataset for one-dimensional conservative approximation, where we construct a numerical flux function from the given point values such that the flux difference approximates the derivative to high-order accuracy. The symmetric-balancing term is introduced for the loss function so that it propels the neural network to match the conservative approximation to the derivative and satisfy the symmetric property that WENO3-JS and WENO3-Z have in common. The consequent WENO schemes, WENO3-CADNNs, demonstrate robust generalization across various benchmark scenarios and resolutions, where they outperform WENO3-Z and achieve accuracy comparable to WENO5-JS.