Generative AI technologies have demonstrated significant potential across diverse applications. This study provides a comparative analysis of credit score modeling techniques, contrasting traditional approaches with those leveraging generative AI. Our findings reveal that current generative AI models fall short of matching the performance of traditional methods, regardless of the integration strategy employed. These results highlight the limitations in the current capabilities of generative AI for credit risk scoring, emphasizing the need for further research and development before the possibility of applying generative AI for this specific task, or equivalent ones.