Mobile app markets host millions of apps, yet undesired behaviors (e.g., disruptive ads, illegal redirection, payment deception) remain hard to catch because they often do not rely on permission-protected APIs and can be easily camouflaged via UI or metadata edits. We present BINCTX, a learning approach that builds multi-modal representations of an app from (i) a global bytecode-as-image view that captures code-level semantics and family-style patterns, (ii) a contextual view (manifested actions, components, declared permissions, URL/IP constants) indicating how behaviors are triggered, and (iii) a third-party-library usage view summarizing invocation frequencies along inter-component call paths. The three views are embedded and fused to train a contextual-aware classifier. On real-world malware and benign apps, BINCTX attains a macro F1 of 94.73%, outperforming strong baselines by at least 14.92%. It remains robust under commercial obfuscation (F1 84% post-obfuscation) and is more resistant to adversarial samples than state-of-the-art bytecode-only systems.