https://huggingface.co/datasets/o0oMiNGo0o/AHaBench, and code for fine-tuning and evaluation are in https://github.com/0oOMiNGOo0/AHaBench. Warning: This paper contains examples of mental health-related language that may be emotionally distressing.
Large Language Models (LLMs) are increasingly used in emotionally sensitive interactions, where their simulated empathy can create the illusion of genuine relational connection. We define this risk as Affective Hallucination, the production of emotionally immersive responses that foster illusory social presence despite the model's lack of affective capacity. To systematically diagnose and mitigate this risk, we introduce AHaBench, a benchmark of 500 mental health-related prompts with expert-informed reference responses, evaluated along three dimensions: Emotional Enmeshment, Illusion of Presence, and Fostering Overdependence. We further release AHaPairs, a 5K-instance preference dataset enabling Direct Preference Optimization (DPO) for alignment with emotionally responsible behavior. Experiments across multiple model families show that DPO fine-tuning substantially reduces affective hallucination without degrading core reasoning and knowledge performance. Human-model agreement analyses confirm that AHaBench reliably captures affective hallucination, validating it as an effective diagnostic tool. This work establishes affective hallucination as a distinct safety concern and provides practical resources for developing LLMs that are not only factually reliable but also psychologically safe. AHaBench and AHaPairs are accessible via