This paper presents the development of an AI powered software platform that leverages advanced large language models (LLMs) to transform technology scouting and solution discovery in industrial R&D. Traditional approaches to solving complex research and development challenges are often time consuming, manually driven, and heavily dependent on domain specific expertise. These methods typically involve navigating fragmented sources such as patent repositories, commercial product catalogs, and competitor data, leading to inefficiencies and incomplete insights. The proposed platform utilizes cutting edge LLM capabilities including semantic understanding, contextual reasoning, and cross-domain knowledge extraction to interpret problem statements and retrieve high-quality, sustainable solutions. The system processes unstructured patent texts, such as claims and technical descriptions, and systematically extracts potential innovations aligned with the given problem context. These solutions are then algorithmically organized under standardized technical categories and subcategories to ensure clarity and relevance across interdisciplinary domains. In addition to patent analysis, the platform integrates commercial intelligence by identifying validated market solutions and active organizations addressing similar challenges. This combined insight sourced from both intellectual property and real world product data enables R&D teams to assess not only technical novelty but also feasibility, scalability, and sustainability. The result is a comprehensive, AI driven scouting engine that reduces manual effort, accelerates innovation cycles, and enhances decision making in complex R&D environments.