In this paper, we introduce a versatile scheme for optimizing the arrival rates of quasi-reversible queueing systems. We first propose an alternative definition of quasi-reversibility that encompasses reversibility and highlights the importance of the definition of customer classes. In a second time, we introduce balanced arrival control policies, which generalize the notion of balanced arrival rates introduced in the context of Whittle networks, to the much broader class of quasi-reversible queueing systems. We prove that supplementing a quasi-reversible queueing system with a balanced arrival-control policy preserves the quasi-reversibility, and we specify the form of the stationary measures. We revisit two canonical examples of quasi-reversible queueing systems, Whittle networks and order-independent queues. Lastly, we focus on the problem of admission control and leverage our results in the frameworks of optimization and reinforcement learning.