Recent breakthroughs in artificial intelligence (AI) have triggered surges in market valuations for AI-related companies, often outpacing the realization of underlying capabilities. We examine the anchoring effect of AI capabilities on equity valuations and propose a Capability Realization Rate (CRR) model to quantify the gap between AI potential and realized performance. Using data from the 2023--2025 generative AI boom, we analyze sector-level sensitivity and conduct case studies (OpenAI, Adobe, NVIDIA, Meta, Microsoft, Goldman Sachs) to illustrate patterns of valuation premium and misalignment. Our findings indicate that AI-native firms commanded outsized valuation premiums anchored to future potential, while traditional companies integrating AI experienced re-ratings subject to proof of tangible returns. We argue that CRR can help identify valuation misalignment risk-where market prices diverge from realized AI-driven value. We conclude with policy recommendations to improve transparency, mitigate speculative bubbles, and align AI innovation with sustainable market value.