Semiconductor manufacturing generates vast amounts of image data, crucial for defect identification and yield optimization, yet often exceeds manual inspection capabilities. Traditional clustering techniques struggle with high-dimensional, unlabeled data, limiting their effectiveness in capturing nuanced patterns. This paper introduces an advanced clustering framework that integrates deep Topological Data Analysis (TDA) with self-supervised and transfer learning techniques, offering a novel approach to unsupervised image clustering. TDA captures intrinsic topological features, while self-supervised learning extracts meaningful representations from unlabeled data, reducing reliance on labeled datasets. Transfer learning enhances the framework's adaptability and scalability, allowing fine-tuning to new datasets without retraining from scratch. Validated on synthetic and open-source semiconductor image datasets, the framework successfully identifies clusters aligned with defect patterns and process variations. This study highlights the transformative potential of combining TDA, self-supervised learning, and transfer learning, providing a scalable solution for proactive process monitoring and quality control in semiconductor manufacturing and other domains with large-scale image datasets.