In recent years, the illicit use of unmanned aerial vehicles (UAVs) for deliveries in restricted area such as prisons became a significant security challenge. While numerous studies have focused on UAV detection or localization, little attention has been given to delivery events identification. This study presents the first acoustic package delivery detection algorithm using a ground-based microphone array. The proposed method estimates both the drone's propeller speed and the delivery event using solely acoustic features. A deep neural network detects the presence of a drone and estimates the propeller's rotation speed or blade passing frequency (BPF) from a mel spectrogram. The algorithm analyzes the BPFs to identify probable delivery moments based on sudden changes before and after a specific time. Results demonstrate a mean absolute error of the blade passing frequency estimator of 16 Hz when the drone is less than 150 meters away from the microphone array. The drone presence detection estimator has a accuracy of 97%. The delivery detection algorithm correctly identifies 96% of events with a false positive rate of 8%. This study shows that deliveries can be identified using acoustic signals up to a range of 100 meters.