Detecting anomalies in hyperspectral image data, i.e. regions which are spectrally distinct from the image background, is a common task in hyperspectral imaging. Such regions may represent interesting objects to human operators, but obtaining results often requires post-processing of captured data, delaying insight. To address this limitation, we apply an anomaly detection algorithm to a visible and near-infrared (VNIR) push-broom hyperspectral image sensor in real time onboard a small uncrewed aerial system (UAS), exploring how UAS limitations affect the algorithm. As the generated anomaly information is much more concise than the raw hyperspectral data, it can feasibly be transmitted wirelessly. To detection, we couple an innovative and fast georectification algorithm that enables anomalous areas to be interactively investigated and characterized immediately by a human operator receiving the anomaly data at a ground station. Using these elements, we demonstrate a novel and complete end-to-end solution from data capture and preparation, through anomaly detection and transmission, to ground station display and interaction, all in real time and with relatively low cost components.