Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:We present a real-time safety filter for motion planning, such as learning-based methods, using Control Barrier Functions (CBFs), which provides formal guarantees for collision avoidance with road boundaries. A key feature of our approach is its ability to directly incorporate road geometries of arbitrary shape without resorting to conservative overapproximations. We formulate the safety filter as a constrained optimization problem in the form of a Quadratic Program (QP). It achieves safety by making minimal, necessary adjustments to the control actions issued by the nominal motion planner. We validate our safety filter through extensive numerical experiments across a variety of traffic scenarios featuring complex roads. The results confirm its reliable safety and high computational efficiency (execution frequency up to 40 Hz). Code & Video Demo: github.com/bassamlab/SigmaRL