The concepts of convolutional neural networks (CNNs) and multi-agent systems are two important areas of research in artificial intelligence (AI). In this paper, we present an approach that builds a CNN-based colony of AI agents to serve as a single system and perform multiple tasks (e.g., predictions or classifications) in an environment. The proposed system impersonates the natural environment of a biological system, like an ant colony or a human colony. The proposed colony of AI that is defined as a role-based system uniquely contributes to accomplish tasks in an environment by incorporating AI agents that are fast learners, detailed learners, and organized learners. These learners can enhance their localized learning and their collective decisions as a single system of colony of AI agents. This approach also enhances the diversity and quality of the colony of AI with the help of Genetic Algorithms and their crossover and mutation mechanisms. The evolution of fast, detailed, and organized learners in the colony of AI is achieved by introducing a unique one-to-one mapping between these learners and the pretrained VGG16, VGG19, and ResNet50 models, respectively. This role-based approach creates two parent-AI agents using the AI models through the processes, called the intra- and inter-marriage of AI, so that they can share their learned knowledge (weights and biases) based on a probabilistic rule and produce diversified child-AI agents to perform new tasks. This process will form a colony of AI that consists of families of multi-model and mixture-model AI agents to improve diversity and quality. Simulations show that the colony of AI, built using the VGG16, VGG19, and ResNet50 models, can provide a single system that generates child-AI agents of excellent predictive performance, ranging between 82% and 95% of F1-scores, to make diversified collective and quality decisions on a task.