Large language models (LLMs) show promise for healthcare question answering, but clinical use is limited by weak verification, insufficient evidence grounding, and unreliable confidence signalling. We propose a multi-agent medical QA framework that combines complementary LLMs with evidence retrieval, uncertainty estimation, and bias checks to improve answer reliability. Our approach has two phases. First, we fine-tune three representative LLM families (GPT, LLaMA, and DeepSeek R1) on MedQuAD-derived medical QA data (20k+ question-answer pairs across multiple NIH domains) and benchmark generation quality. DeepSeek R1 achieves the strongest scores (ROUGE-1 0.536 +- 0.04; ROUGE-2 0.226 +-0.03; BLEU 0.098 -+ 0.018) and substantially outperforms the specialised biomedical baseline BioGPT in zero-shot evaluation. Second, we implement a modular multi-agent pipeline in which a Clinical Reasoning agent (fine-tuned LLaMA) produces structured explanations, an Evidence Retrieval agent queries PubMed to ground responses in recent literature, and a Refinement agent (DeepSeek R1) improves clarity and factual consistency; an optional human validation path is triggered for high-risk or high-uncertainty cases. Safety mechanisms include Monte Carlo dropout and perplexity-based uncertainty scoring, plus lexical and sentiment-based bias detection supported by LIME/SHAP-based analyses. In evaluation, the full system achieves 87% accuracy with relevance around 0.80, and evidence augmentation reduces uncertainty (perplexity 4.13) compared to base responses, with mean end-to-end latency of 36.5 seconds under the reported configuration. Overall, the results indicate that agent specialisation and verification layers can mitigate key single-model limitations and provide a practical, extensible design for evidence-based and bias-aware medical AI.