We develop a new algorithm for inference based on SVARs identified with sign restrictions. The key insight of our algorithm is to break apart from the accept-reject tradition associated with sign-identified SVARs. We show that embedding an elliptical slice sampling within a Gibbs sampler approach can deliver dramatic gains in speed and turn previously infeasible applications into feasible ones. We provide a tractable example to illustrate the power of the elliptical slice sampling applied to sign-identified SVARs. We demonstrate the usefulness of our algorithm by applying it to a well-known small-SVAR model of the oil market featuring a tight identified set as well as to large SVAR model with more than 100 sign restrictions.