The symplectic geometry mode decomposition (SGMD) is a powerful method for decomposing time series, which is based on the diagonal averaging principle (DAP) inherited from the singular spectrum analysis (SSA). Although the authors of SGMD method generalized the form of the trajectory matrix in SSA, the DAP is not updated simultaneously. In this work, we pointed out the limitations of the SGMD method and fixed the bugs with the pulling back theorem for computing the given component of time series from the corresponding component of trajectory matrix.