Alert button
Picture for Wiro J. Niessen

Wiro J. Niessen

Alert button

Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands

Minimally Interactive Segmentation of Soft-Tissue Tumors on CT and MRI using Deep Learning

Feb 12, 2024
Douwe J. Spaanderman, Martijn P. A. Starmans, Gonnie C. M. van Erp, David F. Hanff, Judith H. Sluijter, Anne-Rose W. Schut, Geert J. L. H. van Leenders, Cornelis Verhoef, Dirk J. Grunhagen, Wiro J. Niessen, Jacob J. Visser, Stefan Klein

Viaarxiv icon

An automated framework for brain vessel centerline extraction from CTA images

Jan 13, 2024
Sijie Liu, Ruisheng Su, Jianghang Su, Jingmin Xin, Jiayi Wu, Wim van Zwam, Pieter Jan van Doormaal, Aad van der Lugt, Wiro J. Niessen, Nanning Zheng, Theo van Walsum

Viaarxiv icon

Computer-aided diagnosis and prediction in brain disorders

Jun 29, 2022
Vikram Venkatraghavan, Sebastian R. van der Voort, Daniel Bos, Marion Smits, Frederik Barkhof, Wiro J. Niessen, Stefan Klein, Esther E. Bron

Figure 1 for Computer-aided diagnosis and prediction in brain disorders
Figure 2 for Computer-aided diagnosis and prediction in brain disorders
Figure 3 for Computer-aided diagnosis and prediction in brain disorders
Viaarxiv icon

Reproducible radiomics through automated machine learning validated on twelve clinical applications

Aug 19, 2021
Martijn P. A. Starmans, Sebastian R. van der Voort, Thomas Phil, Milea J. M. Timbergen, Melissa Vos, Guillaume A. Padmos, Wouter Kessels, David Hanff, Dirk J. Grunhagen, Cornelis Verhoef, Stefan Sleijfer, Martin J. van den Bent, Marion Smits, Roy S. Dwarkasing, Christopher J. Els, Federico Fiduzi, Geert J. L. H. van Leenders, Anela Blazevic, Johannes Hofland, Tessa Brabander, Renza A. H. van Gils, Gaston J. H. Franssen, Richard A. Feelders, Wouter W. de Herder, Florian E. Buisman, Francois E. J. A. Willemssen, Bas Groot Koerkamp, Lindsay Angus, Astrid A. M. van der Veldt, Ana Rajicic, Arlette E. Odink, Mitchell Deen, Jose M. Castillo T., Jifke Veenland, Ivo Schoots, Michel Renckens, Michail Doukas, Rob A. de Man, Jan N. M. IJzermans, Razvan L. Miclea, Peter B. Vermeulen, Esther E. Bron, Maarten G. Thomeer, Jacob J. Visser, Wiro J. Niessen, Stefan Klein

Figure 1 for Reproducible radiomics through automated machine learning validated on twelve clinical applications
Figure 2 for Reproducible radiomics through automated machine learning validated on twelve clinical applications
Figure 3 for Reproducible radiomics through automated machine learning validated on twelve clinical applications
Figure 4 for Reproducible radiomics through automated machine learning validated on twelve clinical applications
Viaarxiv icon

Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration

Dec 28, 2020
Bo Li, Wiro J. Niessen, Stefan Klein, Marius de Groot, M. Arfan Ikram, Meike W. Vernooij, Esther E. Bron

Figure 1 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 2 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 3 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 4 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Viaarxiv icon

Cross-Cohort Generalizability of Deep and Conventional Machine Learning for MRI-based Diagnosis and Prediction of Alzheimer's Disease

Dec 16, 2020
Esther E. Bron, Stefan Klein, Janne M. Papma, Lize C. Jiskoot, Vikram Venkatraghavan, Jara Linders, Pauline Aalten, Peter Paul De Deyn, Geert Jan Biessels, Jurgen A. H. R. Claassen, Huub A. M. Middelkoop, Marion Smits, Wiro J. Niessen, John C. van Swieten, Wiesje M. van der Flier, Inez H. G. B. Ramakers, Aad van der Lugt

Figure 1 for Cross-Cohort Generalizability of Deep and Conventional Machine Learning for MRI-based Diagnosis and Prediction of Alzheimer's Disease
Figure 2 for Cross-Cohort Generalizability of Deep and Conventional Machine Learning for MRI-based Diagnosis and Prediction of Alzheimer's Disease
Figure 3 for Cross-Cohort Generalizability of Deep and Conventional Machine Learning for MRI-based Diagnosis and Prediction of Alzheimer's Disease
Figure 4 for Cross-Cohort Generalizability of Deep and Conventional Machine Learning for MRI-based Diagnosis and Prediction of Alzheimer's Disease
Viaarxiv icon

Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI

Nov 03, 2020
Bo Li, Wiro J. Niessen, Stefan Klein, M. Arfan Ikram, Meike W. Vernooij, Esther E. Bron

Figure 1 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Figure 2 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Figure 3 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Viaarxiv icon

Differential diagnosis and molecular stratification of gastrointestinal stromal tumors on CT images using a radiomics approach

Oct 15, 2020
Martijn P. A. Starmans, Milea J. M. Timbergen, Melissa Vos, Michel Renckens, Dirk J. Grünhagen, Geert J. L. H. van Leenders, Roy S. Dwarkasing, François E. J. A. Willemssen, Wiro J. Niessen, Cornelis Verhoef, Stefan Sleijfer, Jacob J. Visser, Stefan Klein

Figure 1 for Differential diagnosis and molecular stratification of gastrointestinal stromal tumors on CT images using a radiomics approach
Figure 2 for Differential diagnosis and molecular stratification of gastrointestinal stromal tumors on CT images using a radiomics approach
Figure 3 for Differential diagnosis and molecular stratification of gastrointestinal stromal tumors on CT images using a radiomics approach
Figure 4 for Differential diagnosis and molecular stratification of gastrointestinal stromal tumors on CT images using a radiomics approach
Viaarxiv icon

WHO 2016 subtyping and automated segmentation of glioma using multi-task deep learning

Oct 09, 2020
Sebastian R. van der Voort, Fatih Incekara, Maarten M. J. Wijnenga, Georgios Kapsas, Renske Gahrmann, Joost W. Schouten, Rishi Nandoe Tewarie, Geert J. Lycklama, Philip C. De Witt Hamer, Roelant S. Eijgelaar, Pim J. French, Hendrikus J. Dubbink, Arnaud J. P. E. Vincent, Wiro J. Niessen, Martin J. van den Bent, Marion Smits, Stefan Klein

Figure 1 for WHO 2016 subtyping and automated segmentation of glioma using multi-task deep learning
Figure 2 for WHO 2016 subtyping and automated segmentation of glioma using multi-task deep learning
Figure 3 for WHO 2016 subtyping and automated segmentation of glioma using multi-task deep learning
Figure 4 for WHO 2016 subtyping and automated segmentation of glioma using multi-task deep learning
Viaarxiv icon

autoTICI: Automatic Brain Tissue Reperfusion Scoring on 2D DSA Images of Acute Ischemic Stroke Patients

Oct 06, 2020
Ruisheng Su, Sandra A. P. Cornelissen, Matthijs van der Sluijs, Adriaan C. G. M. van Es, Wim H. van Zwam, Diederik W. J. Dippel, Geert Lycklama, Pieter Jan van Doormaal, Wiro J. Niessen, Aad van der Lugt, Theo van Walsum

Figure 1 for autoTICI: Automatic Brain Tissue Reperfusion Scoring on 2D DSA Images of Acute Ischemic Stroke Patients
Figure 2 for autoTICI: Automatic Brain Tissue Reperfusion Scoring on 2D DSA Images of Acute Ischemic Stroke Patients
Figure 3 for autoTICI: Automatic Brain Tissue Reperfusion Scoring on 2D DSA Images of Acute Ischemic Stroke Patients
Figure 4 for autoTICI: Automatic Brain Tissue Reperfusion Scoring on 2D DSA Images of Acute Ischemic Stroke Patients
Viaarxiv icon