Alert button
Picture for Tom Eelbode

Tom Eelbode

Alert button

Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging

Dec 02, 2020
Abel Díaz Berenguer, Hichem Sahli, Boris Joukovsky, Maryna Kvasnytsia, Ine Dirks, Mitchel Alioscha-Perez, Nikos Deligiannis, Panagiotis Gonidakis, Sebastián Amador Sánchez, Redona Brahimetaj, Evgenia Papavasileiou, Jonathan Cheung-Wai Chana, Fei Li, Shangzhen Song, Yixin Yang, Sofie Tilborghs, Siri Willems, Tom Eelbode, Jeroen Bertels, Dirk Vandermeulen, Frederik Maes, Paul Suetens, Lucas Fidon, Tom Vercauteren, David Robben, Arne Brys, Dirk Smeets, Bart Ilsen, Nico Buls, Nina Watté, Johan de Mey, Annemiek Snoeckx, Paul M. Parizel, Julien Guiot, Louis Deprez, Paul Meunier, Stefaan Gryspeerdt, Kristof De Smet, Bart Jansen, Jef Vandemeulebroucke

Figure 1 for Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging
Figure 2 for Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging
Figure 3 for Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging
Figure 4 for Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging
Viaarxiv icon

Optimization for Medical Image Segmentation: Theory and Practice when evaluating with Dice Score or Jaccard Index

Oct 26, 2020
Tom Eelbode, Jeroen Bertels, Maxim Berman, Dirk Vandermeulen, Frederik Maes, Raf Bisschops, Matthew B. Blaschko

Figure 1 for Optimization for Medical Image Segmentation: Theory and Practice when evaluating with Dice Score or Jaccard Index
Figure 2 for Optimization for Medical Image Segmentation: Theory and Practice when evaluating with Dice Score or Jaccard Index
Figure 3 for Optimization for Medical Image Segmentation: Theory and Practice when evaluating with Dice Score or Jaccard Index
Figure 4 for Optimization for Medical Image Segmentation: Theory and Practice when evaluating with Dice Score or Jaccard Index
Viaarxiv icon

Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients

Aug 21, 2020
Sofie Tilborghs, Ine Dirks, Lucas Fidon, Siri Willems, Tom Eelbode, Jeroen Bertels, Bart Ilsen, Arne Brys, Adriana Dubbeldam, Nico Buls, Panagiotis Gonidakis, Sebastián Amador Sánchez, Annemiek Snoeckx, Paul M. Parizel, Johan de Mey, Dirk Vandermeulen, Tom Vercauteren, David Robben, Dirk Smeets, Frederik Maes, Jef Vandemeulebroucke, Paul Suetens

Figure 1 for Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
Figure 2 for Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
Figure 3 for Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
Figure 4 for Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
Viaarxiv icon

Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory & Practice

Nov 05, 2019
Jeroen Bertels, Tom Eelbode, Maxim Berman, Dirk Vandermeulen, Frederik Maes, Raf Bisschops, Matthew Blaschko

Figure 1 for Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory & Practice
Figure 2 for Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory & Practice
Viaarxiv icon