Alert button
Picture for Sofia Vallecorsa

Sofia Vallecorsa

Alert button

Dual-Parameterized Quantum Circuit GAN Model in High Energy Physics

Mar 29, 2021
Su Yeon Chang, Steven Herbert, Sofia Vallecorsa, Elías F. Combarro, Ross Duncan

Figure 1 for Dual-Parameterized Quantum Circuit GAN Model in High Energy Physics
Figure 2 for Dual-Parameterized Quantum Circuit GAN Model in High Energy Physics
Figure 3 for Dual-Parameterized Quantum Circuit GAN Model in High Energy Physics
Figure 4 for Dual-Parameterized Quantum Circuit GAN Model in High Energy Physics
Viaarxiv icon

Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case

Mar 18, 2021
Florian Rehm, Sofia Vallecorsa, Vikram Saletore, Hans Pabst, Adel Chaibi, Valeriu Codreanu, Kerstin Borras, Dirk Krücker

Figure 1 for Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case
Figure 2 for Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case
Figure 3 for Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case
Figure 4 for Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case
Viaarxiv icon

Pandemic Drugs at Pandemic Speed: Accelerating COVID-19 Drug Discovery with Hybrid Machine Learning- and Physics-based Simulations on High Performance Computers

Mar 04, 2021
Agastya P. Bhati, Shunzhou Wan, Dario Alfè, Austin R. Clyde, Mathis Bode, Li Tan, Mikhail Titov, Andre Merzky, Matteo Turilli, Shantenu Jha, Roger R. Highfield, Walter Rocchia, Nicola Scafuri, Sauro Succi, Dieter Kranzlmüller, Gerald Mathias, David Wifling, Yann Donon, Alberto Di Meglio, Sofia Vallecorsa, Heng Ma, Anda Trifan, Arvind Ramanathan, Tom Brettin, Alexander Partin, Fangfang Xia, Xiaotan Duan, Rick Stevens, Peter V. Coveney

Figure 1 for Pandemic Drugs at Pandemic Speed: Accelerating COVID-19 Drug Discovery with Hybrid Machine Learning- and Physics-based Simulations on High Performance Computers
Figure 2 for Pandemic Drugs at Pandemic Speed: Accelerating COVID-19 Drug Discovery with Hybrid Machine Learning- and Physics-based Simulations on High Performance Computers
Figure 3 for Pandemic Drugs at Pandemic Speed: Accelerating COVID-19 Drug Discovery with Hybrid Machine Learning- and Physics-based Simulations on High Performance Computers
Figure 4 for Pandemic Drugs at Pandemic Speed: Accelerating COVID-19 Drug Discovery with Hybrid Machine Learning- and Physics-based Simulations on High Performance Computers
Viaarxiv icon

Deep Learning strategies for ProtoDUNE raw data denoising

Mar 02, 2021
Marco Rossi, Sofia Vallecorsa

Figure 1 for Deep Learning strategies for ProtoDUNE raw data denoising
Figure 2 for Deep Learning strategies for ProtoDUNE raw data denoising
Figure 3 for Deep Learning strategies for ProtoDUNE raw data denoising
Figure 4 for Deep Learning strategies for ProtoDUNE raw data denoising
Viaarxiv icon

Quantum Generative Adversarial Networks in a Continuous-Variable Architecture to Simulate High Energy Physics Detectors

Jan 26, 2021
Su Yeon Chang, Sofia Vallecorsa, Elías F. Combarro, Federico Carminati

Figure 1 for Quantum Generative Adversarial Networks in a Continuous-Variable Architecture to Simulate High Energy Physics Detectors
Figure 2 for Quantum Generative Adversarial Networks in a Continuous-Variable Architecture to Simulate High Energy Physics Detectors
Figure 3 for Quantum Generative Adversarial Networks in a Continuous-Variable Architecture to Simulate High Energy Physics Detectors
Figure 4 for Quantum Generative Adversarial Networks in a Continuous-Variable Architecture to Simulate High Energy Physics Detectors
Viaarxiv icon

Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics

Jan 08, 2020
Dawit Belayneh, Federico Carminati, Amir Farbin, Benjamin Hooberman, Gulrukh Khattak, Miaoyuan Liu, Junze Liu, Dominick Olivito, Vitória Barin Pacela, Maurizio Pierini, Alexander Schwing, Maria Spiropulu, Sofia Vallecorsa, Jean-Roch Vlimant, Wei Wei, Matt Zhang

Figure 1 for Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics
Figure 2 for Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics
Figure 3 for Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics
Figure 4 for Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics
Viaarxiv icon

Deploying AI Frameworks on Secure HPC Systems with Containers

May 24, 2019
David Brayford, Sofia Vallecorsa, Atanas Atanasov, Fabio Baruffa, Walter Riviera

Figure 1 for Deploying AI Frameworks on Secure HPC Systems with Containers
Figure 2 for Deploying AI Frameworks on Secure HPC Systems with Containers
Figure 3 for Deploying AI Frameworks on Secure HPC Systems with Containers
Figure 4 for Deploying AI Frameworks on Secure HPC Systems with Containers
Viaarxiv icon

Machine Learning in High Energy Physics Community White Paper

Jul 08, 2018
Kim Albertsson, Piero Altoe, Dustin Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Taylor Childers, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Omar Zapata

Figure 1 for Machine Learning in High Energy Physics Community White Paper
Figure 2 for Machine Learning in High Energy Physics Community White Paper
Figure 3 for Machine Learning in High Energy Physics Community White Paper
Viaarxiv icon