Alert button
Picture for Radu Timofte

Radu Timofte

Alert button

Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report

Nov 07, 2022
Andrey Ignatov, Radu Timofte, Maurizio Denna, Abdel Younes, Ganzorig Gankhuyag, Jingang Huh, Myeong Kyun Kim, Kihwan Yoon, Hyeon-Cheol Moon, Seungho Lee, Yoonsik Choe, Jinwoo Jeong, Sungjei Kim, Maciej Smyl, Tomasz Latkowski, Pawel Kubik, Michal Sokolski, Yujie Ma, Jiahao Chao, Zhou Zhou, Hongfan Gao, Zhengfeng Yang, Zhenbing Zeng, Zhengyang Zhuge, Chenghua Li, Dan Zhu, Mengdi Sun, Ran Duan, Yan Gao, Lingshun Kong, Long Sun, Xiang Li, Xingdong Zhang, Jiawei Zhang, Yaqi Wu, Jinshan Pan, Gaocheng Yu, Jin Zhang, Feng Zhang, Zhe Ma, Hongbin Wang, Hojin Cho, Steve Kim, Huaen Li, Yanbo Ma, Ziwei Luo, Youwei Li, Lei Yu, Zhihong Wen, Qi Wu, Haoqiang Fan, Shuaicheng Liu, Lize Zhang, Zhikai Zong, Jeremy Kwon, Junxi Zhang, Mengyuan Li, Nianxiang Fu, Guanchen Ding, Han Zhu, Zhenzhong Chen, Gen Li, Yuanfan Zhang, Lei Sun, Dafeng Zhang, Neo Yang, Fitz Liu, Jerry Zhao, Mustafa Ayazoglu, Bahri Batuhan Bilecen, Shota Hirose, Kasidis Arunruangsirilert, Luo Ao, Ho Chun Leung, Andrew Wei, Jie Liu, Qiang Liu, Dahai Yu, Ao Li, Lei Luo, Ce Zhu, Seongmin Hong, Dongwon Park, Joonhee Lee, Byeong Hyun Lee, Seunggyu Lee, Se Young Chun, Ruiyuan He, Xuhao Jiang, Haihang Ruan, Xinjian Zhang, Jing Liu, Garas Gendy, Nabil Sabor, Jingchao Hou, Guanghui He

Figure 1 for Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report
Figure 2 for Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report
Figure 3 for Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report
Figure 4 for Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report
Viaarxiv icon

Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report

Nov 07, 2022
Andrey Ignatov, Grigory Malivenko, Radu Timofte, Lukasz Treszczotko, Xin Chang, Piotr Ksiazek, Michal Lopuszynski, Maciej Pioro, Rafal Rudnicki, Maciej Smyl, Yujie Ma, Zhenyu Li, Zehui Chen, Jialei Xu, Xianming Liu, Junjun Jiang, XueChao Shi, Difan Xu, Yanan Li, Xiaotao Wang, Lei Lei, Ziyu Zhang, Yicheng Wang, Zilong Huang, Guozhong Luo, Gang Yu, Bin Fu, Jiaqi Li, Yiran Wang, Zihao Huang, Zhiguo Cao, Marcos V. Conde, Denis Sapozhnikov, Byeong Hyun Lee, Dongwon Park, Seongmin Hong, Joonhee Lee, Seunggyu Lee, Se Young Chun

Figure 1 for Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report
Figure 2 for Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report
Figure 3 for Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report
Figure 4 for Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report
Viaarxiv icon

Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report

Nov 07, 2022
Andrey Ignatov, Radu Timofte, Shuai Liu, Chaoyu Feng, Furui Bai, Xiaotao Wang, Lei Lei, Ziyao Yi, Yan Xiang, Zibin Liu, Shaoqing Li, Keming Shi, Dehui Kong, Ke Xu, Minsu Kwon, Yaqi Wu, Jiesi Zheng, Zhihao Fan, Xun Wu, Feng Zhang, Albert No, Minhyeok Cho, Zewen Chen, Xiaze Zhang, Ran Li, Juan Wang, Zhiming Wang, Marcos V. Conde, Ui-Jin Choi, Georgy Perevozchikov, Egor Ershov, Zheng Hui, Mengchuan Dong, Xin Lou, Wei Zhou, Cong Pang, Haina Qin, Mingxuan Cai

Figure 1 for Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report
Figure 2 for Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report
Figure 3 for Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report
Figure 4 for Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report
Viaarxiv icon

Perceptual Image Enhancement for Smartphone Real-Time Applications

Oct 24, 2022
Marcos V. Conde, Florin Vasluianu, Javier Vazquez-Corral, Radu Timofte

Figure 1 for Perceptual Image Enhancement for Smartphone Real-Time Applications
Figure 2 for Perceptual Image Enhancement for Smartphone Real-Time Applications
Figure 3 for Perceptual Image Enhancement for Smartphone Real-Time Applications
Figure 4 for Perceptual Image Enhancement for Smartphone Real-Time Applications
Viaarxiv icon

Reversed Image Signal Processing and RAW Reconstruction. AIM 2022 Challenge Report

Oct 20, 2022
Marcos V. Conde, Radu Timofte, Yibin Huang, Jingyang Peng, Chang Chen, Cheng Li, Eduardo Pérez-Pellitero, Fenglong Song, Furui Bai, Shuai Liu, Chaoyu Feng, Xiaotao Wang, Lei Lei, Yu Zhu, Chenghua Li, Yingying Jiang, Yong A, Peisong Wang, Cong Leng, Jian Cheng, Xiaoyu Liu, Zhicun Yin, Zhilu Zhang, Junyi Li, Ming Liu, Wangmeng Zuo, Jun Jiang, Jinha Kim, Yue Zhang, Beiji Zou, Zhikai Zong, Xiaoxiao Liu, Juan Marín Vega, Michael Sloth, Peter Schneider-Kamp, Richard Röttger, Furkan Kınlı, Barış Özcan, Furkan Kıraç, Li Leyi, SM Nadim Uddin, Dipon Kumar Ghosh, Yong Ju Jung

Figure 1 for Reversed Image Signal Processing and RAW Reconstruction. AIM 2022 Challenge Report
Figure 2 for Reversed Image Signal Processing and RAW Reconstruction. AIM 2022 Challenge Report
Figure 3 for Reversed Image Signal Processing and RAW Reconstruction. AIM 2022 Challenge Report
Figure 4 for Reversed Image Signal Processing and RAW Reconstruction. AIM 2022 Challenge Report
Viaarxiv icon

AIM 2022 Challenge on Instagram Filter Removal: Methods and Results

Oct 17, 2022
Furkan Kınlı, Sami Menteş, Barış Özcan, Furkan Kıraç, Radu Timofte, Yi Zuo, Zitao Wang, Xiaowen Zhang, Yu Zhu, Chenghua Li, Cong Leng, Jian Cheng, Shuai Liu, Chaoyu Feng, Furui Bai, Xiaotao Wang, Lei Lei, Tianzhi Ma, Zihan Gao, Wenxin He, Woon-Ha Yeo, Wang-Taek Oh, Young-Il Kim, Han-Cheol Ryu, Gang He, Shaoyi Long, S. M. A. Sharif, Rizwan Ali Naqvi, Sungjun Kim, Guisik Kim, Seohyeon Lee, Sabari Nathan, Priya Kansal

Figure 1 for AIM 2022 Challenge on Instagram Filter Removal: Methods and Results
Figure 2 for AIM 2022 Challenge on Instagram Filter Removal: Methods and Results
Figure 3 for AIM 2022 Challenge on Instagram Filter Removal: Methods and Results
Figure 4 for AIM 2022 Challenge on Instagram Filter Removal: Methods and Results
Viaarxiv icon

SiNeRF: Sinusoidal Neural Radiance Fields for Joint Pose Estimation and Scene Reconstruction

Oct 10, 2022
Yitong Xia, Hao Tang, Radu Timofte, Luc Van Gool

Figure 1 for SiNeRF: Sinusoidal Neural Radiance Fields for Joint Pose Estimation and Scene Reconstruction
Figure 2 for SiNeRF: Sinusoidal Neural Radiance Fields for Joint Pose Estimation and Scene Reconstruction
Figure 3 for SiNeRF: Sinusoidal Neural Radiance Fields for Joint Pose Estimation and Scene Reconstruction
Figure 4 for SiNeRF: Sinusoidal Neural Radiance Fields for Joint Pose Estimation and Scene Reconstruction
Viaarxiv icon

Basic Binary Convolution Unit for Binarized Image Restoration Network

Oct 02, 2022
Bin Xia, Yulun Zhang, Yitong Wang, Yapeng Tian, Wenming Yang, Radu Timofte, Luc Van Gool

Figure 1 for Basic Binary Convolution Unit for Binarized Image Restoration Network
Figure 2 for Basic Binary Convolution Unit for Binarized Image Restoration Network
Figure 3 for Basic Binary Convolution Unit for Binarized Image Restoration Network
Figure 4 for Basic Binary Convolution Unit for Binarized Image Restoration Network
Viaarxiv icon

Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration

Sep 22, 2022
Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte

Figure 1 for Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration
Figure 2 for Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration
Figure 3 for Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration
Figure 4 for Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration
Viaarxiv icon

AIM 2022 Challenge on Super-Resolution of Compressed Image and Video: Dataset, Methods and Results

Aug 25, 2022
Ren Yang, Radu Timofte, Xin Li, Qi Zhang, Lin Zhang, Fanglong Liu, Dongliang He, Fu li, He Zheng, Weihang Yuan, Pavel Ostyakov, Dmitry Vyal, Magauiya Zhussip, Xueyi Zou, Youliang Yan, Lei Li, Jingzhu Tang, Ming Chen, Shijie Zhao, Yu Zhu, Xiaoran Qin, Chenghua Li, Cong Leng, Jian Cheng, Claudio Rota, Marco Buzzelli, Simone Bianco, Raimondo Schettini, Dafeng Zhang, Feiyu Huang, Shizhuo Liu, Xiaobing Wang, Zhezhu Jin, Bingchen Li, Xin Li, Mingxi Li, Ding Liu, Wenbin Zou, Peijie Dong, Tian Ye, Yunchen Zhang, Ming Tan, Xin Niu, Mustafa Ayazoglu, Marcos Conde, Ui-Jin Choi, Zhuang Jia, Tianyu Xu, Yijian Zhang, Mao Ye, Dengyan Luo, Xiaofeng Pan, Liuhan Peng

Figure 1 for AIM 2022 Challenge on Super-Resolution of Compressed Image and Video: Dataset, Methods and Results
Figure 2 for AIM 2022 Challenge on Super-Resolution of Compressed Image and Video: Dataset, Methods and Results
Figure 3 for AIM 2022 Challenge on Super-Resolution of Compressed Image and Video: Dataset, Methods and Results
Figure 4 for AIM 2022 Challenge on Super-Resolution of Compressed Image and Video: Dataset, Methods and Results
Viaarxiv icon