Alert button
Picture for Greg Corrado

Greg Corrado

Alert button

A Toolbox for Surfacing Health Equity Harms and Biases in Large Language Models

Mar 18, 2024
Stephen R. Pfohl, Heather Cole-Lewis, Rory Sayres, Darlene Neal, Mercy Asiedu, Awa Dieng, Nenad Tomasev, Qazi Mamunur Rashid, Shekoofeh Azizi, Negar Rostamzadeh, Liam G. McCoy, Leo Anthony Celi, Yun Liu, Mike Schaekermann, Alanna Walton, Alicia Parrish, Chirag Nagpal, Preeti Singh, Akeiylah Dewitt, Philip Mansfield, Sushant Prakash, Katherine Heller, Alan Karthikesalingam, Christopher Semturs, Joelle Barral, Greg Corrado, Yossi Matias, Jamila Smith-Loud, Ivor Horn, Karan Singhal

Viaarxiv icon

Multimodal LLMs for health grounded in individual-specific data

Jul 20, 2023
Anastasiya Belyaeva, Justin Cosentino, Farhad Hormozdiari, Krish Eswaran, Shravya Shetty, Greg Corrado, Andrew Carroll, Cory Y. McLean, Nicholas A. Furlotte

Figure 1 for Multimodal LLMs for health grounded in individual-specific data
Figure 2 for Multimodal LLMs for health grounded in individual-specific data
Figure 3 for Multimodal LLMs for health grounded in individual-specific data
Figure 4 for Multimodal LLMs for health grounded in individual-specific data
Viaarxiv icon

AI system for fetal ultrasound in low-resource settings

Mar 18, 2022
Ryan G. Gomes, Bellington Vwalika, Chace Lee, Angelica Willis, Marcin Sieniek, Joan T. Price, Christina Chen, Margaret P. Kasaro, James A. Taylor, Elizabeth M. Stringer, Scott Mayer McKinney, Ntazana Sindano, George E. Dahl, William Goodnight III, Justin Gilmer, Benjamin H. Chi, Charles Lau, Terry Spitz, T Saensuksopa, Kris Liu, Jonny Wong, Rory Pilgrim, Akib Uddin, Greg Corrado, Lily Peng, Katherine Chou, Daniel Tse, Jeffrey S. A. Stringer, Shravya Shetty

Figure 1 for AI system for fetal ultrasound in low-resource settings
Figure 2 for AI system for fetal ultrasound in low-resource settings
Figure 3 for AI system for fetal ultrasound in low-resource settings
Figure 4 for AI system for fetal ultrasound in low-resource settings
Viaarxiv icon

Scientific Discovery by Generating Counterfactuals using Image Translation

Jul 10, 2020
Arunachalam Narayanaswamy, Subhashini Venugopalan, Dale R. Webster, Lily Peng, Greg Corrado, Paisan Ruamviboonsuk, Pinal Bavishi, Michael Brenner, Philip Nelson, Avinash V. Varadarajan

Figure 1 for Scientific Discovery by Generating Counterfactuals using Image Translation
Figure 2 for Scientific Discovery by Generating Counterfactuals using Image Translation
Figure 3 for Scientific Discovery by Generating Counterfactuals using Image Translation
Figure 4 for Scientific Discovery by Generating Counterfactuals using Image Translation
Viaarxiv icon

Detecting Deficient Coverage in Colonoscopies

Jan 26, 2020
Daniel Freedman, Yochai Blau, Liran Katzir, Amit Aides, Ilan Shimshoni, Danny Veikherman, Tomer Golany, Ariel Gordon, Greg Corrado, Yossi Matias, Ehud Rivlin

Figure 1 for Detecting Deficient Coverage in Colonoscopies
Figure 2 for Detecting Deficient Coverage in Colonoscopies
Figure 3 for Detecting Deficient Coverage in Colonoscopies
Figure 4 for Detecting Deficient Coverage in Colonoscopies
Viaarxiv icon

Explaining an increase in predicted risk for clinical alerts

Jul 10, 2019
Michaela Hardt, Alvin Rajkomar, Gerardo Flores, Andrew Dai, Michael Howell, Greg Corrado, Claire Cui, Moritz Hardt

Figure 1 for Explaining an increase in predicted risk for clinical alerts
Figure 2 for Explaining an increase in predicted risk for clinical alerts
Figure 3 for Explaining an increase in predicted risk for clinical alerts
Viaarxiv icon

The Algorithmic Automation Problem: Prediction, Triage, and Human Effort

Mar 28, 2019
Maithra Raghu, Katy Blumer, Greg Corrado, Jon Kleinberg, Ziad Obermeyer, Sendhil Mullainathan

Figure 1 for The Algorithmic Automation Problem: Prediction, Triage, and Human Effort
Figure 2 for The Algorithmic Automation Problem: Prediction, Triage, and Human Effort
Figure 3 for The Algorithmic Automation Problem: Prediction, Triage, and Human Effort
Figure 4 for The Algorithmic Automation Problem: Prediction, Triage, and Human Effort
Viaarxiv icon

TensorFlow.js: Machine Learning for the Web and Beyond

Jan 16, 2019
Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann Yuan, Nick Kreeger, Ping Yu, Kangyi Zhang, Shanqing Cai, Eric Nielsen, David Soergel, Stan Bileschi, Michael Terry, Charles Nicholson, Sandeep N. Gupta, Sarah Sirajuddin, D. Sculley, Rajat Monga, Greg Corrado, Fernanda B. Viegas, Martin Wattenberg

Figure 1 for TensorFlow.js: Machine Learning for the Web and Beyond
Figure 2 for TensorFlow.js: Machine Learning for the Web and Beyond
Figure 3 for TensorFlow.js: Machine Learning for the Web and Beyond
Figure 4 for TensorFlow.js: Machine Learning for the Web and Beyond
Viaarxiv icon

Scalable and accurate deep learning for electronic health records

May 11, 2018
Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajaj, Peter J. Liu, Xiaobing Liu, Mimi Sun, Patrik Sundberg, Hector Yee, Kun Zhang, Gavin E. Duggan, Gerardo Flores, Michaela Hardt, Jamie Irvine, Quoc Le, Kurt Litsch, Jake Marcus, Alexander Mossin, Justin Tansuwan, De Wang, James Wexler, Jimbo Wilson, Dana Ludwig, Samuel L. Volchenboum, Katherine Chou, Michael Pearson, Srinivasan Madabushi, Nigam H. Shah, Atul J. Butte, Michael Howell, Claire Cui, Greg Corrado, Jeff Dean

Figure 1 for Scalable and accurate deep learning for electronic health records
Viaarxiv icon