Alert button
Picture for Erik C. Johnson

Erik C. Johnson

Alert button

Using evolutionary computation to optimize task performance of unclocked, recurrent Boolean circuits in FPGAs

Mar 19, 2024
Raphael Norman-Tenazas, David Kleinberg, Erik C. Johnson, Daniel P. Lathrop, Matthew J. Roos

Viaarxiv icon

Exploiting Large Neuroimaging Datasets to Create Connectome-Constrained Approaches for more Robust, Efficient, and Adaptable Artificial Intelligence

May 26, 2023
Erik C. Johnson, Brian S. Robinson, Gautam K. Vallabha, Justin Joyce, Jordan K. Matelsky, Raphael Norman-Tenazas, Isaac Western, Marisel Villafañe-Delgado, Martha Cervantes, Michael S. Robinette, Arun V. Reddy, Lindsey Kitchell, Patricia K. Rivlin, Elizabeth P. Reilly, Nathan Drenkow, Matthew J. Roos, I-Jeng Wang, Brock A. Wester, William R. Gray-Roncal, Joan A. Hoffmann

Figure 1 for Exploiting Large Neuroimaging Datasets to Create Connectome-Constrained Approaches for more Robust, Efficient, and Adaptable Artificial Intelligence
Figure 2 for Exploiting Large Neuroimaging Datasets to Create Connectome-Constrained Approaches for more Robust, Efficient, and Adaptable Artificial Intelligence
Figure 3 for Exploiting Large Neuroimaging Datasets to Create Connectome-Constrained Approaches for more Robust, Efficient, and Adaptable Artificial Intelligence
Figure 4 for Exploiting Large Neuroimaging Datasets to Create Connectome-Constrained Approaches for more Robust, Efficient, and Adaptable Artificial Intelligence
Viaarxiv icon

MTNeuro: A Benchmark for Evaluating Representations of Brain Structure Across Multiple Levels of Abstraction

Jan 01, 2023
Jorge Quesada, Lakshmi Sathidevi, Ran Liu, Nauman Ahad, Joy M. Jackson, Mehdi Azabou, Jingyun Xiao, Christopher Liding, Matthew Jin, Carolina Urzay, William Gray-Roncal, Erik C. Johnson, Eva L. Dyer

Figure 1 for MTNeuro: A Benchmark for Evaluating Representations of Brain Structure Across Multiple Levels of Abstraction
Figure 2 for MTNeuro: A Benchmark for Evaluating Representations of Brain Structure Across Multiple Levels of Abstraction
Figure 3 for MTNeuro: A Benchmark for Evaluating Representations of Brain Structure Across Multiple Levels of Abstraction
Figure 4 for MTNeuro: A Benchmark for Evaluating Representations of Brain Structure Across Multiple Levels of Abstraction
Viaarxiv icon

Continual learning benefits from multiple sleep mechanisms: NREM, REM, and Synaptic Downscaling

Sep 09, 2022
Brian S. Robinson, Clare W. Lau, Alexander New, Shane M. Nichols, Erik C. Johnson, Michael Wolmetz, William G. Coon

Figure 1 for Continual learning benefits from multiple sleep mechanisms: NREM, REM, and Synaptic Downscaling
Figure 2 for Continual learning benefits from multiple sleep mechanisms: NREM, REM, and Synaptic Downscaling
Figure 3 for Continual learning benefits from multiple sleep mechanisms: NREM, REM, and Synaptic Downscaling
Figure 4 for Continual learning benefits from multiple sleep mechanisms: NREM, REM, and Synaptic Downscaling
Viaarxiv icon

L2Explorer: A Lifelong Reinforcement Learning Assessment Environment

Mar 14, 2022
Erik C. Johnson, Eric Q. Nguyen, Blake Schreurs, Chigozie S. Ewulum, Chace Ashcraft, Neil M. Fendley, Megan M. Baker, Alexander New, Gautam K. Vallabha

Figure 1 for L2Explorer: A Lifelong Reinforcement Learning Assessment Environment
Figure 2 for L2Explorer: A Lifelong Reinforcement Learning Assessment Environment
Figure 3 for L2Explorer: A Lifelong Reinforcement Learning Assessment Environment
Figure 4 for L2Explorer: A Lifelong Reinforcement Learning Assessment Environment
Viaarxiv icon

Mine Your Own vieW: Self-Supervised Learning Through Across-Sample Prediction

Feb 19, 2021
Mehdi Azabou, Mohammad Gheshlaghi Azar, Ran Liu, Chi-Heng Lin, Erik C. Johnson, Kiran Bhaskaran-Nair, Max Dabagia, Keith B. Hengen, William Gray-Roncal, Michal Valko, Eva L. Dyer

Figure 1 for Mine Your Own vieW: Self-Supervised Learning Through Across-Sample Prediction
Figure 2 for Mine Your Own vieW: Self-Supervised Learning Through Across-Sample Prediction
Figure 3 for Mine Your Own vieW: Self-Supervised Learning Through Across-Sample Prediction
Figure 4 for Mine Your Own vieW: Self-Supervised Learning Through Across-Sample Prediction
Viaarxiv icon