CMAP
Abstract:Incorporating expert demonstrations has empirically helped to improve the sample efficiency of reinforcement learning (RL). This paper quantifies theoretically to what extent this extra information reduces RL's sample complexity. In particular, we study the demonstration-regularized reinforcement learning that leverages the expert demonstrations by KL-regularization for a policy learned by behavior cloning. Our findings reveal that using $N^{\mathrm{E}}$ expert demonstrations enables the identification of an optimal policy at a sample complexity of order $\widetilde{\mathcal{O}}(\mathrm{Poly}(S,A,H)/(\varepsilon^2 N^{\mathrm{E}}))$ in finite and $\widetilde{\mathcal{O}}(\mathrm{Poly}(d,H)/(\varepsilon^2 N^{\mathrm{E}}))$ in linear Markov decision processes, where $\varepsilon$ is the target precision, $H$ the horizon, $A$ the number of action, $S$ the number of states in the finite case and $d$ the dimension of the feature space in the linear case. As a by-product, we provide tight convergence guarantees for the behaviour cloning procedure under general assumptions on the policy classes. Additionally, we establish that demonstration-regularized methods are provably efficient for reinforcement learning from human feedback (RLHF). In this respect, we provide theoretical evidence showing the benefits of KL-regularization for RLHF in tabular and linear MDPs. Interestingly, we avoid pessimism injection by employing computationally feasible regularization to handle reward estimation uncertainty, thus setting our approach apart from the prior works.
Abstract:In this paper we consider the problem of obtaining sharp bounds for the performance of temporal difference (TD) methods with linear functional approximation for policy evaluation in discounted Markov Decision Processes. We show that a simple algorithm with a universal and instance-independent step size together with Polyak-Ruppert tail averaging is sufficient to obtain near-optimal variance and bias terms. We also provide the respective sample complexity bounds. Our proof technique is based on refined error bounds for linear stochastic approximation together with the novel stability result for the product of random matrices that arise from the TD-type recurrence.
Abstract:In today's era, autonomous vehicles demand a safety level on par with aircraft. Taking a cue from the aerospace industry, which relies on redundancy to achieve high reliability, the automotive sector can also leverage this concept by building redundancy in V2X (Vehicle-to-Everything) technologies. Given the current lack of reliable V2X technologies, this idea is particularly promising. By deploying multiple RATs (Radio Access Technologies) in parallel, the ongoing debate over the standard technology for future vehicles can be put to rest. However, coordinating multiple communication technologies is a complex task due to dynamic, time-varying channels and varying traffic conditions. This paper addresses the vertical handover problem in V2X using Deep Reinforcement Learning (DRL) algorithms. The goal is to assist vehicles in selecting the most appropriate V2X technology (DSRC/V-VLC) in a serpentine environment. The results show that the benchmarked algorithms outperform the current state-of-the-art approaches in terms of redundancy and usage rate of V-VLC headlights. This result is a significant reduction in communication costs while maintaining a high level of reliability. These results provide strong evidence for integrating advanced DRL decision mechanisms into the architecture as a promising approach to solving the vertical handover problem in V2X.
Abstract:Ill-posed linear inverse problems that combine knowledge of the forward measurement model with prior models arise frequently in various applications, from computational photography to medical imaging. Recent research has focused on solving these problems with score-based generative models (SGMs) that produce perceptually plausible images, especially in inpainting problems. In this study, we exploit the particular structure of the prior defined in the SGM to formulate recovery in a Bayesian framework as a Feynman--Kac model adapted from the forward diffusion model used to construct score-based diffusion. To solve this Feynman--Kac problem, we propose the use of Sequential Monte Carlo methods. The proposed algorithm, MCGdiff, is shown to be theoretically grounded and we provide numerical simulations showing that it outperforms competing baselines when dealing with ill-posed inverse problems.
Abstract:Federated Learning (FL) is a machine learning framework where many clients collaboratively train models while keeping the training data decentralized. Despite recent advances in FL, the uncertainty quantification topic (UQ) remains partially addressed. Among UQ methods, conformal prediction (CP) approaches provides distribution-free guarantees under minimal assumptions. We develop a new federated conformal prediction method based on quantile regression and take into account privacy constraints. This method takes advantage of importance weighting to effectively address the label shift between agents and provides theoretical guarantees for both valid coverage of the prediction sets and differential privacy. Extensive experimental studies demonstrate that this method outperforms current competitors.
Abstract:This paper delves into stochastic optimization problems that involve Markovian noise. We present a unified approach for the theoretical analysis of first-order gradient methods for stochastic optimization and variational inequalities. Our approach covers scenarios for both non-convex and strongly convex minimization problems. To achieve an optimal (linear) dependence on the mixing time of the underlying noise sequence, we use the randomized batching scheme, which is based on the multilevel Monte Carlo method. Moreover, our technique allows us to eliminate the limiting assumptions of previous research on Markov noise, such as the need for a bounded domain and uniformly bounded stochastic gradients. Our extension to variational inequalities under Markovian noise is original. Additionally, we provide lower bounds that match the oracle complexity of our method in the case of strongly convex optimization problems.
Abstract:In this paper, we propose a novel centralized Asynchronous Federated Learning (FL) framework, FAVAS, for training Deep Neural Networks (DNNs) in resource-constrained environments. Despite its popularity, ``classical'' federated learning faces the increasingly difficult task of scaling synchronous communication over large wireless networks. Moreover, clients typically have different computing resources and therefore computing speed, which can lead to a significant bias (in favor of ``fast'' clients) when the updates are asynchronous. Therefore, practical deployment of FL requires to handle users with strongly varying computing speed in communication/resource constrained setting. We provide convergence guarantees for FAVAS in a smooth, non-convex environment and carefully compare the obtained convergence guarantees with existing bounds, when they are available. Experimental results show that the FAVAS algorithm outperforms current methods on standard benchmarks.
Abstract:Reinforcement learning (RL) allows an agent interacting sequentially with an environment to maximize its long-term expected return. In the distributional RL (DistrRL) paradigm, the agent goes beyond the limit of the expected value, to capture the underlying probability distribution of the return across all time steps. The set of DistrRL algorithms has led to improved empirical performance. Nevertheless, the theory of DistrRL is still not fully understood, especially in the control case. In this paper, we present the simpler one-step distributional reinforcement learning (OS-DistrRL) framework encompassing only the randomness induced by the one-step dynamics of the environment. Contrary to DistrRL, we show that our approach comes with a unified theory for both policy evaluation and control. Indeed, we propose two OS-DistrRL algorithms for which we provide an almost sure convergence analysis. The proposed approach compares favorably with categorical DistrRL on various environments.
Abstract:We consider the problem of learning in a non-stationary reinforcement learning (RL) environment, where the setting can be fully described by a piecewise stationary discrete-time Markov decision process (MDP). We introduce a variant of the Restarted Bayesian Online Change-Point Detection algorithm (R-BOCPD) that operates on input streams originating from the more general multinomial distribution and provides near-optimal theoretical guarantees in terms of false-alarm rate and detection delay. Based on this, we propose an improved version of the UCRL2 algorithm for MDPs with state transition kernel sampled from a multinomial distribution, which we call R-BOCPD-UCRL2. We perform a finite-time performance analysis and show that R-BOCPD-UCRL2 enjoys a favorable regret bound of $O\left(D O \sqrt{A T K_T \log\left (\frac{T}{\delta} \right) + \frac{K_T \log \frac{K_T}{\delta}}{\min\limits_\ell \: \mathbf{KL}\left( {\mathbf{\theta}^{(\ell+1)}}\mid\mid{\mathbf{\theta}^{(\ell)}}\right)}}\right)$, where $D$ is the largest MDP diameter from the set of MDPs defining the piecewise stationary MDP setting, $O$ is the finite number of states (constant over all changes), $A$ is the finite number of actions (constant over all changes), $K_T$ is the number of change points up to horizon $T$, and $\mathbf{\theta}^{(\ell)}$ is the transition kernel during the interval $[c_\ell, c_{\ell+1})$, which we assume to be multinomially distributed over the set of states $\mathbb{O}$. Interestingly, the performance bound does not directly scale with the variation in MDP state transition distributions and rewards, ie. can also model abrupt changes. In practice, R-BOCPD-UCRL2 outperforms the state-of-the-art in a variety of scenarios in synthetic environments. We provide a detailed experimental setup along with a code repository (upon publication) that can be used to easily reproduce our experiments.
Abstract:We consider the problem of minimizing a non-convex function over a smooth manifold $\mathcal{M}$. We propose a novel algorithm, the Orthogonal Directions Constrained Gradient Method (ODCGM) which only requires computing a projection onto a vector space. ODCGM is infeasible but the iterates are constantly pulled towards the manifold, ensuring the convergence of ODCGM towards $\mathcal{M}$. ODCGM is much simpler to implement than the classical methods which require the computation of a retraction. Moreover, we show that ODCGM exhibits the near-optimal oracle complexities $\mathcal{O}(1/\varepsilon^2)$ and $\mathcal{O}(1/\varepsilon^4)$ in the deterministic and stochastic cases, respectively. Furthermore, we establish that, under an appropriate choice of the projection metric, our method recovers the landing algorithm of Ablin and Peyr\'e (2022), a recently introduced algorithm for optimization over the Stiefel manifold. As a result, we significantly extend the analysis of Ablin and Peyr\'e (2022), establishing near-optimal rates both in deterministic and stochastic frameworks. Finally, we perform numerical experiments which shows the efficiency of ODCGM in a high-dimensional setting.