Alert button
Picture for Cagri Kilic

Cagri Kilic

Alert button

Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, USA

Evaluation of the Benefits of Zero Velocity Update in Decentralized EKF-Based Cooperative Localization Algorithms for GNSS-Denied Multi-Robot Systems

Jun 30, 2023
Cagri Kilic, Eduardo Gutierrez, Jason N. Gross

Figure 1 for Evaluation of the Benefits of Zero Velocity Update in Decentralized EKF-Based Cooperative Localization Algorithms for GNSS-Denied Multi-Robot Systems
Figure 2 for Evaluation of the Benefits of Zero Velocity Update in Decentralized EKF-Based Cooperative Localization Algorithms for GNSS-Denied Multi-Robot Systems
Figure 3 for Evaluation of the Benefits of Zero Velocity Update in Decentralized EKF-Based Cooperative Localization Algorithms for GNSS-Denied Multi-Robot Systems
Figure 4 for Evaluation of the Benefits of Zero Velocity Update in Decentralized EKF-Based Cooperative Localization Algorithms for GNSS-Denied Multi-Robot Systems
Viaarxiv icon

Proprioceptive Slip Detection for Planetary Rovers in Perceptually Degraded Extraterrestrial Environments

Jul 29, 2022
Cagri Kilic, Yu Gu, Jason N. Gross

Figure 1 for Proprioceptive Slip Detection for Planetary Rovers in Perceptually Degraded Extraterrestrial Environments
Figure 2 for Proprioceptive Slip Detection for Planetary Rovers in Perceptually Degraded Extraterrestrial Environments
Figure 3 for Proprioceptive Slip Detection for Planetary Rovers in Perceptually Degraded Extraterrestrial Environments
Figure 4 for Proprioceptive Slip Detection for Planetary Rovers in Perceptually Degraded Extraterrestrial Environments
Viaarxiv icon

A Comparison of Robust Kalman Filters for Improving Wheel-Inertial Odometry in Planetary Rovers

Dec 15, 2021
Shounak Das, Cagri Kilic, Ryan Watson, Jason Gross

Figure 1 for A Comparison of Robust Kalman Filters for Improving Wheel-Inertial Odometry in Planetary Rovers
Figure 2 for A Comparison of Robust Kalman Filters for Improving Wheel-Inertial Odometry in Planetary Rovers
Figure 3 for A Comparison of Robust Kalman Filters for Improving Wheel-Inertial Odometry in Planetary Rovers
Figure 4 for A Comparison of Robust Kalman Filters for Improving Wheel-Inertial Odometry in Planetary Rovers
Viaarxiv icon

ZUPT Aided GNSS Factor Graph with Inertial Navigation Integration for Wheeled Robots

Dec 14, 2021
Cagri Kilic, Shounak Das, Eduardo Gutierrez, Ryan Watson, Jason Gross

Figure 1 for ZUPT Aided GNSS Factor Graph with Inertial Navigation Integration for Wheeled Robots
Figure 2 for ZUPT Aided GNSS Factor Graph with Inertial Navigation Integration for Wheeled Robots
Figure 3 for ZUPT Aided GNSS Factor Graph with Inertial Navigation Integration for Wheeled Robots
Figure 4 for ZUPT Aided GNSS Factor Graph with Inertial Navigation Integration for Wheeled Robots
Viaarxiv icon

NASA Space Robotics Challenge 2 Qualification Round: An Approach to Autonomous Lunar Rover Operations

Sep 20, 2021
Cagri Kilic, Bernardo Martinez R. Jr., Christopher A. Tatsch, Jared Beard, Jared Strader, Shounak Das, Derek Ross, Yu Gu, Guilherme A. S. Pereira, Jason N. Gross

Figure 1 for NASA Space Robotics Challenge 2 Qualification Round: An Approach to Autonomous Lunar Rover Operations
Figure 2 for NASA Space Robotics Challenge 2 Qualification Round: An Approach to Autonomous Lunar Rover Operations
Figure 3 for NASA Space Robotics Challenge 2 Qualification Round: An Approach to Autonomous Lunar Rover Operations
Figure 4 for NASA Space Robotics Challenge 2 Qualification Round: An Approach to Autonomous Lunar Rover Operations
Viaarxiv icon

Slip-Based Autonomous ZUPT through Gaussian Process to Improve Planetary Rover Localization

Mar 13, 2021
Cagri Kilic, Nicholas Ohi, Yu Gu, Jason N. Gross

Figure 1 for Slip-Based Autonomous ZUPT through Gaussian Process to Improve Planetary Rover Localization
Figure 2 for Slip-Based Autonomous ZUPT through Gaussian Process to Improve Planetary Rover Localization
Figure 3 for Slip-Based Autonomous ZUPT through Gaussian Process to Improve Planetary Rover Localization
Figure 4 for Slip-Based Autonomous ZUPT through Gaussian Process to Improve Planetary Rover Localization
Viaarxiv icon

Team Mountaineers Space Robotic Challenge Phase-2 Qualification Round Preparation Report

Mar 22, 2020
Cagri Kilic, Christopher A. Tatsch, Bernardo Martinez R. Jr, Jared J. Beard, Derek W. Ross, Jason N. Gross

Figure 1 for Team Mountaineers Space Robotic Challenge Phase-2 Qualification Round Preparation Report
Figure 2 for Team Mountaineers Space Robotic Challenge Phase-2 Qualification Round Preparation Report
Figure 3 for Team Mountaineers Space Robotic Challenge Phase-2 Qualification Round Preparation Report
Figure 4 for Team Mountaineers Space Robotic Challenge Phase-2 Qualification Round Preparation Report
Viaarxiv icon

Improved Planetary Rover Inertial Navigation and Wheel Odometry Performance through Periodic Use of Zero-Type Constraints

Jun 20, 2019
Cagri Kilic, Jason N. Gross, Nicholas Ohi, Ryan Watson, Jared Strader, Thomas Swiger, Scott Harper, Yu Gu

Figure 1 for Improved Planetary Rover Inertial Navigation and Wheel Odometry Performance through Periodic Use of Zero-Type Constraints
Figure 2 for Improved Planetary Rover Inertial Navigation and Wheel Odometry Performance through Periodic Use of Zero-Type Constraints
Figure 3 for Improved Planetary Rover Inertial Navigation and Wheel Odometry Performance through Periodic Use of Zero-Type Constraints
Figure 4 for Improved Planetary Rover Inertial Navigation and Wheel Odometry Performance through Periodic Use of Zero-Type Constraints
Viaarxiv icon

Design of an Autonomous Precision Pollination Robot

Aug 29, 2018
Nicholas Ohi, Kyle Lassak, Ryan Watson, Jared Strader, Yixin Du, Chizhao Yang, Gabrielle Hedrick, Jennifer Nguyen, Scott Harper, Dylan Reynolds, Cagri Kilic, Jacob Hikes, Sarah Mills, Conner Castle, Benjamin Buzzo, Nicole Waterland, Jason Gross, Yong-Lak Park, Xin Li, Yu Gu

Figure 1 for Design of an Autonomous Precision Pollination Robot
Figure 2 for Design of an Autonomous Precision Pollination Robot
Figure 3 for Design of an Autonomous Precision Pollination Robot
Figure 4 for Design of an Autonomous Precision Pollination Robot
Viaarxiv icon