Text classification is the process of categorizing text documents into predefined categories or labels.
Of the over 7,000 languages spoken in the world, commercial language identification (LID) systems only reliably identify a few hundred in written form. Research-grade systems extend this coverage under certain circumstances, but for most languages coverage remains patchy or nonexistent. This position paper argues that this situation is largely self-imposed. In particular, it arises from a persistent framing of LID as decontextualized text classification, which obscures the central role of prior probability estimation and is reinforced by institutional incentives that favor global, fixed-prior models. We argue that improving coverage for tail languages requires rethinking LID as a routing problem and developing principled ways to incorporate environmental cues that make languages locally plausible.
Emotion classification plays a significant role in emotion prediction and harmful content detection. Recent advancements in NLP, particularly through large language models (LLMs), have greatly improved outcomes in this field. This study introduces ViGoEmotions -- a Vietnamese emotion corpus comprising 20,664 social media comments in which each comment is classified into 27 fine-grained distinct emotions. To evaluate the quality of the dataset and its impact on emotion classification, eight pre-trained Transformer-based models were evaluated under three preprocessing strategies: preserving original emojis with rule-based normalization, converting emojis into textual descriptions, and applying ViSoLex, a model-based lexical normalization system. Results show that converting emojis into text often improves the performance of several BERT-based baselines, while preserving emojis yields the best results for ViSoBERT and CafeBERT. In contrast, removing emojis generally leads to lower performance. ViSoBERT achieved the highest Macro F1-score of 61.50% and Weighted F1-score of 63.26%. Strong performance was also observed from CafeBERT and PhoBERT. These findings highlight that while the proposed corpus can support diverse architectures effectively, preprocessing strategies and annotation quality remain key factors influencing downstream performance.
Fairness is a crucial concern for generative models, which not only reflect but can also amplify societal and cultural biases. Existing fairness notions for generative models are largely adapted from classification and focus on balancing the probability of generating samples from each sensitive group. We show that such criteria are brittle, as they can be met even when different sensitive groups are modeled with widely varying quality. To address this limitation, we introduce a new fairness definition for generative models, termed as equalized generative treatment (EGT), which requires comparable generation quality across all sensitive groups, with quality measured via a reference f-divergence. We further analyze the trade-offs induced by EGT, demonstrating that enforcing fairness constraints necessarily couples the overall model quality to that of the most challenging group to approximate. This indicates that a simple yet efficient min-max fine-tuning method should be able to balance f-divergences across sensitive groups to satisfy EGT. We validate this theoretical insight through a set of experiments on both image and text generation tasks. We demonstrate that min-max methods consistently achieve fairer outcomes compared to other approaches from the literature, while maintaining competitive overall performance for both tasks.
Retrieving wrist radiographs with analogous fracture patterns is challenging because clinically important cues are subtle, highly localized and often obscured by overlapping anatomy or variable imaging views. Progress is further limited by the scarcity of large, well-annotated datasets for case-based medical image retrieval. We introduce WristMIR, a region-aware pediatric wrist radiograph retrieval framework that leverages dense radiology reports and bone-specific localization to learn fine-grained, clinically meaningful image representations without any manual image-level annotations. Using MedGemma-based structured report mining to generate both global and region-level captions, together with pre-processed wrist images and bone-specific crops of the distal radius, distal ulna, and ulnar styloid, WristMIR jointly trains global and local contrastive encoders and performs a two-stage retrieval process: (1) coarse global matching to identify candidate exams, followed by (2) region-conditioned reranking aligned to a predefined anatomical bone region. WristMIR improves retrieval performance over strong vision-language baselines, raising image-to-text Recall@5 from 0.82% to 9.35%. Its embeddings also yield stronger fracture classification (AUROC 0.949, AUPRC 0.953). In region-aware evaluation, the two-stage design markedly improves retrieval-based fracture diagnosis, increasing mean $F_1$ from 0.568 to 0.753, and radiologists rate its retrieved cases as more clinically relevant, with mean scores rising from 3.36 to 4.35. These findings highlight the potential of anatomically guided retrieval to enhance diagnostic reasoning and support clinical decision-making in pediatric musculoskeletal imaging. The source code is publicly available at https://github.com/quin-med-harvard-edu/WristMIR.
Large language models (LLMs) such as GPT-4o and Claude Sonnet 4.5 have demonstrated strong capabilities in open-ended reasoning and generative language tasks, leading to their widespread adoption across a broad range of NLP applications. However, for structured text classification problems with fixed label spaces, model selection is often driven by predictive performance alone, overlooking operational constraints encountered in production systems. In this work, we present a systematic comparison of two contrasting paradigms for text classification: zero- and few-shot prompt-based large language models, and fully fine-tuned encoder-only architectures. We evaluate these approaches across four canonical benchmarks (IMDB, SST-2, AG News, and DBPedia), measuring predictive quality (macro F1), inference latency, and monetary cost. We frame model evaluation as a multi-objective decision problem and analyze trade-offs using Pareto frontier projections and a parameterized utility function reflecting different deployment regimes. Our results show that fine-tuned encoder-based models from the BERT family achieve competitive, and often superior, classification performance while operating at one to two orders of magnitude lower cost and latency compared to zero- and few-shot LLM prompting. Overall, our findings suggest that indiscriminate use of large language models for standard text classification workloads can lead to suboptimal system-level outcomes. Instead, fine-tuned encoders emerge as robust and efficient components for structured NLP pipelines, while LLMs are better positioned as complementary elements within hybrid architectures. We release all code, datasets, and evaluation protocols to support reproducibility and cost-aware NLP system design.
Most existing CLIP-style medical vision--language pretraining methods rely on global or local alignment with substantial paired data. However, global alignment is easily dominated by non-diagnostic information, while local alignment fails to integrate key diagnostic evidence. As a result, learning reliable diagnostic representations becomes difficult, which limits their applicability in medical scenarios with limited paired data. To address this issue, we propose an LLM-Guided Diagnostic Evidence Alignment method (LGDEA), which shifts the pretraining objective toward evidence-level alignment that is more consistent with the medical diagnostic process. Specifically, we leverage LLMs to extract key diagnostic evidence from radiology reports and construct a shared diagnostic evidence space, enabling evidence-aware cross-modal alignment and allowing LGDEA to effectively exploit abundant unpaired medical images and reports, thereby substantially alleviating the reliance on paired data. Extensive experimental results demonstrate that our method achieves consistent and significant improvements on phrase grounding, image--text retrieval, and zero-shot classification, and even rivals pretraining methods that rely on substantial paired data.
Large language models (LLMs) are widely used as zero-shot and few-shot classifiers, where task behaviour is largely controlled through prompting. A growing number of works have observed that LLMs are sensitive to prompt variations, with small changes leading to large changes in performance. However, in many cases, the investigation of sensitivity is performed using underspecified prompts that provide minimal task instructions and weakly constrain the model's output space. In this work, we argue that a significant portion of the observed prompt sensitivity can be attributed to prompt underspecification. We systematically study and compare the sensitivity of underspecified prompts and prompts that provide specific instructions. Utilising performance analysis, logit analysis, and linear probing, we find that underspecified prompts exhibit higher performance variance and lower logit values for relevant tokens, while instruction-prompts suffer less from such problems. However, linear probing analysis suggests that the effects of prompt underspecification have only a marginal impact on the internal LLM representations, instead emerging in the final layers. Overall, our findings highlight the need for more rigour when investigating and mitigating prompt sensitivity.
In-context learning (ICL) enables Large Language Models (LLMs) to adapt to new tasks with only a small set of examples at inference time, thereby avoiding task-specific fine-tuning. However, in-context examples may contain privacy-sensitive information that should not be revealed through model outputs. Existing differential privacy (DP) approaches to ICL are either computationally expensive or rely on heuristics with limited effectiveness, including context oversampling, synthetic data generation, or unnecessary thresholding. We reformulate private ICL through the lens of a Product-of-Experts model. This gives a theoretically grounded framework, and the algorithm can be trivially parallelized. We evaluate our method across five datasets in text classification, math, and vision-language. We find that our method improves accuracy by more than 30 percentage points on average compared to prior DP-ICL methods, while maintaining strong privacy guarantees.
Implicit discourse relation classification is a challenging task, as it requires inferring meaning from context. While contextual cues can be distributed across modalities and vary across languages, they are not always captured by text alone. To address this, we introduce an automatic method for distantly related and unrelated language pairs to construct a multilingual and multimodal dataset for implicit discourse relations in English, French, and Spanish. For classification, we propose a multimodal approach that integrates textual and acoustic information through Qwen2-Audio, allowing joint modeling of text and audio for implicit discourse relation classification across languages. We find that while text-based models outperform audio-based models, integrating both modalities can enhance performance, and cross-lingual transfer can provide substantial improvements for low-resource languages.
Adapting large pretrained models to new tasks efficiently and continually is crucial for real-world deployment but remains challenging due to catastrophic forgetting and the high cost of retraining. While parameter-efficient tuning methods like low rank adaptation (LoRA) reduce computational demands, they lack mechanisms for strict continual learning and knowledge integration, without relying on data replay, or multiple adapters. We propose Share, a novel approach to parameter efficient continual finetuning that learns and dynamically updates a single, shared low-rank subspace, enabling seamless adaptation across multiple tasks and modalities. Share constructs a foundational subspace that extracts core knowledge from past tasks and incrementally integrates new information by identifying essential subspace directions. Knowledge from each new task is incorporated into this evolving subspace, facilitating forward knowledge transfer, while minimizing catastrophic interference. This approach achieves up to 100x parameter reduction and 281x memory savings over traditional LoRA methods, maintaining performance comparable to jointly trained models. A single Share model can replace hundreds of task-specific LoRA adapters, supporting scalable, asynchronous continual learning. Experiments across image classification, natural language understanding, 3D pose estimation, and text-to-image generation validate its effectiveness, making Share a practical and scalable solution for lifelong learning in large-scale AI systems.